Low Temperature Co-fired Ceramic

授課教師: 江簡富 教授

台大電信 電波組 碩一 R92942051 楊錫明 R92942054 郭宗男

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

What is LTCC? (1/1)

- Multilayer
- Size and cost reduction for many applications
- Frequency range from 100 MHz to 40 GHz
- Use of buried components: resistors, capacitors, and inductors
- High density of interconnections with threedimensional design

What is LTCC? (2/2)

- Optimized transitions (from planar circuitry to rectangular <or circular> waveguides.)
- Packaging solutions
- Thermal management for heat dissipation in power applications
- In-house LTCC prototype manufacturing design and characterization of modules and antennas

LTCC Transition

The transition between microstrip line and the laminated waveguide of LTCC

The laminated waveguide of LTCC

Fig. 1. Configuration of the proposed transition of microstrip line to rectangular waveguide on the same substrate.

LTCC product market

Cost Distribution for Typical Wireless Transceiver

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

Difference between HTCC and LTCC

	LTCC	HTCC
Co-fired temperature	850 ℃	1950 ℃
metal	a lower fusion point metal	a higher fusion point metal
Quality	High	low

Why use LTCC?

	LTCC	нтсс	Organic
Conductor Material	Cu or Ag	W or Mo	Cu
Conductor loss	1	3	1
Dielectric loss	2	1	3
Total loss	1	2	3
CTE compared to Si	1	2	3
Thermal conductivity	2	1	3
Embedded passive components	1	3	2
Layer number	1	3	2
Miniaturization for passive components	1	2	2
Miniaturization for active components	2	3	1

1最佳 2普通 3較差

CTE : Co-efficient of Thermal Expansion

Conductor Properties

Material		Resistivity(m Ω /cm)	Melting Point(℃)
Silver	(Ag)	1.63	961
Copper	(Cu)	1.72	1083
Gold	(Au)	2.44	1063
Wolfram	(W)	5.51	3370

Material Properties

Таре Туре	Dupont 951	Dupont 943
Dielectric constant @ 1MHz	7.8	7.4
Loss tangent @ 1MHz	0.0015	0.0009
Shrinkage (X, Y)	~13%	~10.3%
Shrinkage (Z)	~15%	~14.5%
TCE (ppm/°C)	5.8	6.0
Thermal Conductivity (W/m °K)	3.0	4.4
Tape Thickness (mils)	1.7, 3.7, 5.3	4.27

TCE : Temperature Coefficient of Expansion

High Frequency Characterization

16

20

Benefits (1/3)

- Integrated passives --- reliability, size reduction
- High Q, low loss
- Outstanding reliability
- 3-D design
- Controlled impedance(內部接線的阻抗)
- Environmental stability(熱膨脹係數低)

Benefits (2/3)

- Direct chip attach---TCE matching to Si and GaAs
- Rapid prototyping
- Volume manufacturing capacity
- every single layer can be inspected (and in the case of inaccuracy or damage) replaced before firing; this prevents the need of manufacturing a whole new circuit.

Benefits (3/3)

- integrating components is Cost reduction
- A clear advantage over other multichip module (MCM) technologies in integrating passive components

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

Process of LTCC

CAVITIES

Cavity design is complicated by concerns of deformation during lamination and firing, particularly of thin or deep walls.

GROUND PLANES

- Gridded ground planes
 use less precious metal
 - create less ceramic distortion

- □ Lines half as wide as spaces result in 55% metal coverage, and are recommended.
- Solid areas are required at via landings and may be added at other locations.

Three general types of Vias(1/3)

RF shield vias – cover pads optional

Stack offset for hermeticity

RF Shield Vias

RF Shield Vias

<u>Ref: 5.</u>

Three general types of Vias(2/3)

signal vias –
cover pads recommend

Via sizes are limited by tape thickness, due to aspect ratio of filling the vias. Keeping aspect ratio of via to tape close to 1 is optimum for manufacturability.

Three general types of Vias(3/3)

thermal vias –

connected by planes

staggered with planes at each layer

Each Layer offset

Thermal Vias Thermal Vias

CONDUCTORS

- Conductors are typically printed on the green tape
- Placement close to cut edges must be carefully

CUTTING PROCESSES

- Hot Knife
- Saw Cut
- Laser Cut
- Laser Scribe
- Hot Knife Scribe

PACKAGE DESIGN

POST PRINT

- Post printing refers to the process of printing conductors after firing the package, usually after cutting to size.
- Post printing will also be required if grinding is necessary.
 B→IM
- the catch pad sizes must besufficiently large

Cross Section of LTCC Modules

2.4 GHz LTCC Filter

Item	Spec.
Center Freq.(f ₀)	2.45GHz
Bandwidth	f ₀ +/- 50MHz
Insertion Loss	2 dB max.
Attenuation	30 dB min. @ 1.96GHz
Size(mm ³)	2 x 2 x 1.5

2.4 GHz LTCC High-Rejection-Rate Filter

ITEM+	SPECIFICATION.	MEASUREMENT
Center Frequency (f_)+	2442 MHz*	2442 MHz*
Bandwidth (BW)+	83 MHz min +	> 83 MHz+
Insertion Loss @ BW+	2.8 dB max. 0	2.5 dB max.
Ripple @ BW.	1.5 dB max	0.6 dB max
Return Loss @ BW+	10 dB min	13 dB min
Attenuation @ 17501950MHz+	40 dB min. +	40 dB min -
@ 2100MHz+	35 dB min.	40 dB.₂
@ 2200MHz+	20 dB min +	24 dB+
Size	3.2 x 2.5x 1.7 mm²↔	3.2 x 2.5 x 1.46 mm ² +
Substrate/Package+	LTCC+	LTCC

MLC/LTCC Embedded Antenna

Items	Measurement	
	ISM 2.4 GHz	ISM 5 GHz
Bandwidth	110 MHz	1100 MHz
VSWR	2.0	2.0
Gain	1.0 dBi	1.8 dBi
Polarization	Linear	Linear
Azimuth beam width	Omni-directional	Omni-directional
Impedance	50 Ω	50 Ω
Size	6.0 ×4.0 ×1.5 mm ³	

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

LTCC Applications

- Monolithic , Three-dimensional , Cost-effective
- Firing Temperature < 1000 °C
- Benefits :

flexibility , density , reliability , reduced weight , low-loss

- Better than thick-film process (single-step)
- High performance in commercial and military use

LTCC for Wireless Applications

- Base Station Amplifier Modules
- Transmitters and Receivers
- Handset Power Amplifiers
- Low Noise Amplifiers
- Voltage Control Oscillators
- Mixers
- Filters
- Power Splitters and Combiners
- Matching Networks

LTCC in Military & Space Environments

- Transmitters/Receivers
- Phased Array Radar
- Amplifiers
- Filters
- Converters
- Power Drivers
- Sensors

LTCC in the Automotive Industry

- Engine Management Systems
- Gearbox Management Systems
- Anti-Lock Braking Systems
- Global Positioning Systems
- Gas Discharge Lamp Controllers
- Ignition Modules
- Sensor Modules
Miniaturized LTCC Filters

(a)

- Reserve all the design advantage of strip line
- Can be use in portable telephone and other device

Miniaturized RF Modules(1/3)

- Have a lower cost than conventional thick-film process
- Allow innovative implementation of circuit
- The ability to integrate L, R, C
- Incorporation with IC technology further opens a wide range of functionalities and modularization

Miniaturized RF Modules(2/3)

Material properties

- Layer thickness : 25µm~250µm
- Layer count : 80 layers
- **ε**_r : 5~300
- tanδ : 0.001~0.005
- Silver has been extensively used as conductors
- Surface material : platinum , palladium , silver , gold

Miniaturized RF Modules(3/3)

Advantages

- Reduced size (1/2)
- Reduced cost (1/4)
- Key improvement :

impedance matching between circuits or module
⇒ improve the performance and power efficiency of PA
⇒ longer battery life or smaller battery size

LTCC Module

*Buried passive components

*Substrate as package (cavity...)

*Lower TCE (match to Si and GaAs)

*Smaller module volume

*Packaging capability (BGA, FC...)

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

Future developments

- Zero shrinking
- High-permittivity dielectric pastes
- Buried (active) components
- TB-BGA
- Optical components
- Liquid and gas interfaces / conductors
- Brick box system

Zero shrinking 共燒收縮匹配(延遲燒結)

Ref.: 2001 IMAPS proceeding

不同填孔膠之燒結收縮曲線 改善前:添加填孔膠為收縮製程使用 改善後:添加填孔膠為不收縮製程使用

Bild 1: Match-X-Stromsensor- und Signalkonditionierungsbaustein; jeweils einzeln und als Stack (links oben) http://www.mstonline.de/publikationen/infoboerse/ib_2003/ib42.pdf

- · Low Temperature Cofired Ceramics (LTCC) (siehe Photo, links)
- · FR4-Platinenwerkstoff (siehe Photo, rechts)

http://www.imtek.uni-freiburg.de/mikroelektronik/content/upload/system_04.pdf

Optical components

3D LTCC Cavity System

Precision Fibre Alignment

When formulating a new optical product, one of the most critical decisions is the choice of package.

www.cmac.com/mt/

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

Realization of Transmission Zeros in Combline Filters Using an Auxiliary Inductively Coupled Ground Plane

Ching-Wen Tang,

Yin-Ching Lin,

Chi-Yang Chang IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 10, OCTOBER 2003

Introduction

Inductive coupling among three resonator

- Three pole combline filter with capacitive cross-coupling between I/O ports
- Generate two transmission zeros at a low-side skirt to reject local and image signals.
- For the high-side skirt, the inductance generates an extra transmission zero to suppress the harmonic frequency.
- By tuning the L and C₁₃ properly, three transmission zeros appeared at proper places.

Derivation of The Y Matrix

 $l_1 = l_3$ $C_{10} = C_{30} = C_1 = 4.48 \text{pF}$ $C_{20} = C_2 = 2.16 \text{pF}$ $C_{12} = C_{23} = C_3 = 0.77 pF$ $C_{13} = C_4 = 0.36 \text{pF}$ Size of $SL_{1,3}$ =74mil*8mil Size of SL₂ =115mil*8mil L=0.04nH $\epsilon_r=7.8$

Derivation of The Y Matrix

$$Y_{11} = Y_{22}$$

$$= Y_{C4}$$

$$+ \frac{Y_{C3}^{2} + (1 + Y_{C3}Z_{L} + Y_{1}Z_{L}) \cdot [Y_{2}Y_{C3} + Y_{1}(Y_{2} + 2Y_{C3})]}{2Y_{C3} + 4Y_{1}Y_{C3}Z_{L} + Y_{2}(1 + 2Y_{C3}Z_{L} + 2Y_{1}Z_{L})}$$

$$= \frac{Y_{N1}}{Y_{D}}$$

$$Y_{12} = Y_{21}$$

$$= -Y_{C4} - \frac{Y_{C3}^{2} + Z_{L}(Y_{1} + Y_{C3}) \cdot [Y_{2}Y_{C3} + Y_{1}(Y_{2} + 2Y_{C3})]}{2Y_{C3} + 4Y_{1}Y_{C3}Z_{L} + Y_{2}(1 + 2Y_{C3}Z_{L} + 2Y_{1}Z_{L})}$$

$$= \frac{Y_{N2}}{Y_{D}}$$

$$(2)$$

- $Y_{1} = j(\omega C_{1} Y_{C} \cot(\beta l_{1}))$ $Y_{2} = j(\omega C_{2} Y_{C} \cot(\beta l_{2}))$ $Y_{3} = j(\omega C_{3} Y_{C} \cot(\beta l_{3})) = Y_{1}$ $Z_{L} \text{ is the impedance of inductor}$ $Y_{C3} \text{ is the admittance of capacitor } C_{3}$
- Y_{C4} is the admittance of capacitor C_4

Prediction of The Transmission Zeros by Y Matrix

(a)

EM simulation by HFSS

Fig. 7. Simulated response of an LTCC filter mounted on a PCB, as shown in Fig. 6(c).

Analysis of Three Parasitic

Analysis of Three Parasitic Effects-*Through-hole inductance*

(b)

Frequency (GHz)

5.47GHz

Analysis of Three Parasitic Effects-*Microstrip gap*

20 mil : 5.42 GHz
10 mil : 6.30 GHz

$$S \propto rac{1}{C}$$

 $C \propto f_{zero}$
 $S \propto rac{1}{f_{zero}}$

Analysis of Three Parasitic Effects-*Buffer layer thickness*

H=34 mil : 4.65 GHz
H=68 mil : 4.48 GHz

MEASURED RESULTS

Design of a 2-Pole LTCC Filter for Wireless Communications

Vadim Piatnitsa , Eino Jakku , Seppo Leppaevuori

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

FILTER DESIGN *Filter Specification*

Pass Band : 1.9 GHz~ 2.0 GHz

- $f_{o} : 1950 \text{ MHz}$
- BW : 5%
- IL : < 2 dB
- OBR low
 OBR up
- : >20 dB (1.58~1.64 GHz)
- : >10 dB (1.75~1.81 GHz)

FILTER DESIGN Filter Synthesis

Fig. 1. The equivalent scheme of the second- order filter with cross coupling.

C1, pF	C2, pF	C3, pF	C4, pF	C5, pF	L, nH
0.2	0.5	1	0.1	0.1	4.2

Fig. 2. The frequency response of the equivalent circuit.

2-pole filter Chebyshev prototype

FILTER DESIGN Physical Realization of the Filter

meshed ground plane with input and output ports

Fig. 4. The 3-D filter structure without vias between ground planes.

FILTER DESIGN *Measurement*

- RL :>13 dB
- IL : < 1.9 dB
- OBR_{low} : > 23 dB
- OBR_{up} : > 10 dB
- Size : 6.6x6.6x0.836 mm³

Fig. 6. The measured performance of a designed multilayered LTCC filter.

Harmonic-Suppression LTCC Filter with the Step-Impedance Guarter-Wavelength Open Stub

Ching-Wen Tang

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 2, FEBRUARY 2004

Filter desired specifications

Pass Band : 2.4 ~ 2.483 GHz
 IL : < 2 dB
 Zero_{lower} : 1.96 and 2.1 GHz
 Zero_{upper} : 4.8–5 GHz

Filter constructions

Concept of multilayer filter (1/2)

Concept of multilayer filter (2/2)

Simulated result of the LTCC BPF

Differences of stub and layer thicknesses

Two different sintering profiles

Simulated with two different dielectric constants

Measurement

Outline

- What is LTCC?
- Advantages
- Process of LTCC
- Applications of LTCC
- Future developments
- Case study
- Conclusion

Conclusion

- Size and weight reduction is the trend of wireless or mobile communication, and LTCC seems to be the most efficient method.
- Zero shrink variation is the important future work of LTCC.

Reference

- 1. 電腦與通訊工業研究所_工業技術研究院_RF passive components_ 方士庭課長
- 2. Yang-Li-Qun, Horng-Tzyy-Sheng, design and modeling of embedded inductors and capacitors in LTCC Technology
- 3. http://www.ltcc.de
- 4. http://www.cmac.com
- 5. http://www.dupont.com, DuPont
- 6. http://www.ctscorp.com/components/ltcc, 2003 CTS
- 7. http://americas.kyocera.com/kai/semiparts/products, Kyocera America, Inc.
- 8. http://www.laminaceramics.com, Lamina Ceramics
- 9. http://jp.dupont.com/mcm/apri/ltcc, DuPont
- 10. Dominic Deslandes and Ke Wu, Fellow, IEEE, "Integrated Microstrip and Rectangular Waveguide in Planar Form,"IEEE Microwave Wireless Components Lett.,vol. 11, NO. 2, FEB. 2001.